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We have developed a novel technique to incorporate uncertainty modeling thin an
evolutionary algorithm approach to multi-objective scheduling, with the goal of identifying a
Pareto frontier (tradeoff curve) that recognizes the likelihood of events that can impact the
schedule outcome. Our approach is particularly applicable tothe generation of multi
objective optimized robust schedules, where objectives are assigned a service level, for
example that we require an objective value to bé X with Y% confidence. We have
demonstrated that such an approach can, for example, minimizecheduling on less reliable
resources, based solely on a resource reliability model and not on any ad hoc heuristics. We
have also investigated an alternative method of optimizing for robustness, in which we add
to the set of objectives a failure risk objetive to minimize. We compare the advantages and
disadvantages of these two approaches. Future plans for further developing this technology
include its application to spacebased observatory scheduling problems.

|. Introduction

In the context of multmissian scheduling of expensive shared systems such as communications resources, a
critical challenge is that of exploring and managing tradeoffs among missions. For NASAOs Deep Space Network
(DSN), this will become more acute if the network architecture evdlvéscorporate arrays of smaller antennas
that can be grouped dynamically and allocated in highly flexible ways. The objective of the work reported here is to
develop techniques to explicitly optimize the multiple simultaneous and competing objectindiwidiual mission
users as well as the network system as a whole. For the former, objectives center around maximally satisfying
communications needs in terms of link quality, quantity, timing, and other factors. For the latter, objectives are
based on mimizing cost and maximizing network availability. Along with the problem of competing multiple
objectives, the DSN array would be subject to significant additional sources of uncertainty that complicate planning
and scheduling. Chief among these is thesigigity of Ka-band antennas to atmospheric moisture levels, which
implies that weather will impact advance planning in ways that make longetineadcheduling more difficult.

Other sources of uncertainty include equipment failures and rehg@rvicetimes, and unanticipatedisruptive
spacecraft events.

In the following sectionI() we first give an overview of the Deep Space Network (DSN) and its potential
evolution to an arrapased architectul theproposedeep Space Array Network (DSAN). Westeibe how this
evolution would present both opportunities and challenges, and how uncertainty enters to complicate scheduling in
ways not present in today's network. We then describe briefly our-ofjétctive approeh to schedule optimization
(1), and the evolutionary algorithm solution technique we are using. Next we discuss two approaches to
incorporating uncertaintinto the solution approach ()/one based on explicitly modeling probability of faila®
an objective to optimize (IV.A the otheibased on a stochastic assessment of objective valu@y).(We include
an illustrative sample problemand show how it is solved using each techniginally we summarize our
conclusions ad describe some next step9.(V

II.  Overview of the Deep Space NetworkDSN) and Array

The Deep Space Network is NASA's collection of assets for communicating with spacecraft beyesatthear
orbit. It currently comprises dozens of large antennas of diameters 26m, 34m, and 70m, distributed geographically
over three complexespaced sufficiently far apart in longitude to afford full sky coverage (Goldstone, California;
Madrid, Spain; and Canberra, Australia). In addition to the antennas, the complexes contain a variety of supporting
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electronics and computing facilities. Eacbmplex operates around the clock to handle spacecraft data downlink,
command uplink, and other services. All of NASA's deep space missions currently use the DSN, which is operating
today at very near to capacity. Some portions of the sky are alreadsrgigist oversubscbied (e.g. Mars, where

as of early 2008 there at@o surface vehicles and three orbiters operating), and this situation is projected to become
more severe in the future. Over the next 25 years it is expected that the number of widlsiocrease by a factor

of three, that data rates and volumes will grow by a factor of 100, along with a significant increase in data link
difficulty. In addition, plans for human exploration of the Moon, and eventually Mars, would place even greater
demands on data rates and on the quality and reliability of communications links.

The most promising growth path for the DSN is a move to a propasay architectur® Antenna arrays are
already coming intavide use for radio telescopd$ examples includ¢he Very Large Arrayand the more recent
Atacama Large Millimeter Array and Allen Telescope Afrarrays offer a number of advagis over expanding
the current DSN collection of large antennas. First, arrays are made of smaller and much cheajper; aotdrere
is a large economic advantage. Secondly, arrays offer the potential for much greater flexibility. Rather than
dedicating a single antenna to a single mission for some time period, numerous subsets of an equivalent sensitivity
array could be deted to multiple missions, overlapping in time as the various spacecraft come into view. The
number of array antennas could even vary within a single contact, in that fewer antennas would be required to
achieve the same sensitivity when a spacecraftas zenith rather than near the horizon, due to atmospheric signal
attenuation. Thirdly, the implicit redundancy of the array elements means the network would be less vulnerable to
single points of failure. However, along with the array's advantagessmmaeal new challenges:

* scheduling would become much more complex, in that-tiarging resource subsets have to be identified and
assigned to the missions that need them

* smaller antennas call for higher frequencies which are more affected by atnosplogture, with a
correspondingreater risk of schedule up$et

Most missions neetklatively long-term advance schedules to be in place so they can develop command timelines

and build and validate their onboard sequences. Thus the uncertainty cawseaklgr adds a new element to the

advance scheduling problem. Statistical models can be constructed of average rain effects, but deviations from the

average can be very significant and cause major schedule changes. In addition, there is a large mariation i

sensitivity caused simply by the apparent elevation of the spacecraft at the antenna, due to the path length through

the atmosphere. This has a dependency of the fdsin ¢ where ” is the spacecraft elevation.

There as been much effort invested in automating DSN operations and scheduling over the Arears
evolutionary algorithm for DSN scheduling has been described by Guillaume’,evad. considered a single
objective optimization problem, but with different seif objetives. Scheduling for an arragrchitecture is a
relatively new deelopment, discussed by Chedngho used a genetic algorithm to optimize a sirgfgective
formulation of the problem. Johnsfohapplied an evolutionary algorithm to a mwubjective formulation of the
problem (described further below), as well as to the current DSN scheduling pfbblem

[ll.  Multi -Objective Optimization for an Array Architecture

From an optimization perspective, both the DSN and a potential -basgd DSAN architegte are
characterized bynultiple competing objectiveisom the points of view of the various mission users. Has#ris
trying to obtain a commitment to scheduled contacts that provide their required communications services, based on
requirements specifito that mission. These requirements come in many fdramsl can be based on timing and
gaps, coverage duration, specéittennas or antenna types, etc.

A. Objectives and Constraints for Array Scheduling
The optimization objectives in this problem are tuaturally formulated on a usey-user basis. Each user's

objectives an be viewed as quantifying a Odegree of satisfactimtfic, where examples of factors that might
contribute are provided in Tabte From an overall system perspective, optimizai®mriven by satisfying the
maximum number of users, as reflected in the satisfactitimeafindividual objectives.

Constraints in the DSN scheduling problem come from several sources. Mission constraints may be formulated
in terms similar to objectivegdhe main difference being their importance. For example, during a mis$ical
event, what might otherwise be a preference for communications coverage may be elevated to the highest level of
importance, such that no schedule without coverage witldnsidered as feasible. System level constraints include
those based on overall resource availability, for example, reflecting maintenance schedules and ¢dge plann
introduction of new assets.
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Constraints and objectives can play a complementary roleractiqgal scheduling problem, which we exploit in
the solution approach described in the next section. For example, consider a problem which is overconstrained such
that no solution exists. In this situation it is extremely useful to obtain some insighwliat constraints must be
relaxed, and by how much, in order to assess feasibility.

Objective Description

contact duration min and max limits on duration, where a contact is the union of the cov
intervals of overlapping passes

contact gap duration min and max limits on the sizes of any gaps between contacts

pass duration min and max limits on individual pass duration

gap duration min and max limits on the sizes of any gaps between individual passes

coverage fraction fraction of some specifiedntie interval with scheduled contact coverage
(e.g. 010 means continuous coverage)

coverage level number of distinct passes simultaneously providing coverage (e.g. 02
would mean simultaneous coverage at two different sites)

total gap duration total gap incoverage over a specified interval

pass time shift how much a pass has shifted in time from some baseline requested tim

objective out of limit extent to which an objective value exceeds a specified limit

Table 1. Example objectives relevant to contaccheduling problems.

B. Multi -Objective Optimization

The DSN scheduling problem is naturathulti-objectivein that there is no single scalar that characterizes an
optimal solution. The traditional approach to problems like this is to construct sudieactijective, e.g. by taking
some function of the individual user objectives. However, it is obvious that important information is lost when this
is done. To avoid this, we have adopted a mabifectiveoptimization perspectiven which information abdueach
objective is kept separate and is thus available to assess tradeoffs and sensitivity. Among the best current techniques
for solving multiobjective optimization problems aexolutionary algorithmsin which a population of candidate
solutions is deeloped and evolvéd!>*,

We define a multbbjective optimization problem to minimi2 objectives subject t& constraints:

minimize:{fi(;o}, i=1.M
T i
subject to:{gj(x)} <0, j=1.K

Here x represents a vector in decisigpace of dimensioD. A solution is calledPareto optimalwhen no
improvement can be made to one objecthat does not make worse at least one other objective. The set of Pareto
optimal solutions is called thBareto frontier What we seek as a solui to the multiobjective optimization
problem is a good approximation to the Pareto frontier. Two important characteristics of a good solution technique
are convergence to the Pareto frontier, and diversity so as to sample the frontier as fully as possibl

C. An Evolutionary Algorithm Solution Approach
We have adopted asvolutionary algorithmapproach to the array scheduling problesndaetailed in previous
paper&’®. Here we briefly summarize the method, which is based onGibeeralized Differential Evotion 3
agorithm of Kukkonen et a° Among techniques developed to solve malijective optimization problems,
evolutionary algorithms have become popular for a variety of reasons. They have been shown effective on a wide
range of problems and are capalbledealing with objectiveshtit are not mathematically wedliehaved (e.g.
discontinuous, nowlifferentiable). By maintaining a population of solutions they are capable of representing the
entire Pareto frontier at any stage. They also lend themselvesaitepzation, which is an important performance
consideration for large problems. Here we concentrate on one particular variantGeatledhlized Differential
Evolution 3 or GDE3". This technique is based @ifferential Evolution a single objectivevolutionary algorithm
for reatvalued decision spacésGDE3 makes use of concepts pioneered in the algorithm NSGAntluding:
* nondominatedsorting of the population into ranks, such that members ofrraldminate members of all ranks
>n, where ank 1 members constitute the rdominated set, i.e. the current approation to the Pareto frontier
e crowding distancds used as a secondary discriminator on members of the same rank: members in crowded
regions of the population are scored lower, sostigiving members after selection have greater diversity. This
helps prevent premature convergence of the population to a small porti@nRdréto frontier (see afép
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» population members are compared witticaninationor constraintdominationrelationN the latter allows for
dominationcomparisons evewhen constraints are violated
GDES3 operates as follows to evolve the population of Nif®em one generation to the next:

—

1. For each parent member of the populatﬁn select thre distinct population members, , Z z all
different and different from the parent
2. Calculate a trial vectoﬁ = x_r]' +F -(x_r; +xT3) , whereF is a scaling factor

3. Modify the trial vetor by binary crossover with the parent with probabiGf The result is compared with
the parent as follows:
* in case of infeasible vectors, the trial vector is selected if it weakly dominates the parent vector in constraint
violation space, otherwighe parent vector is selected
* in the case of feasible and infeasible vectors, éasible vector is selected
* if both vectors are feasible, then the trial is selected if it weakly dominates the parent in objective space; if the
parent dominates the tridhen the parent is selected; if neither doamtes, then both are selected
The selected vectors may constitute a population of $izé>which case the population size is reduced through
the nondominated sorting and crowding distance mechanism of NSAQA &ddition to high performance, it is also
worth noting that one of the strengths of GDES is its natural treatment of multiple constraints: it is straightforward to
change constraints into objectives when investigabwmgconstrained problems. This especially valuable when
constraints must be relaxed in orderfind any feasible solutiong.o apply this method to the arragcheduling
problem we must encode the allocation of a varying subset of antennas over some time period. We start by consider
acollection ofU users (i.e. missions and other users), over some scheduling time petjod]. Associated with
each user is a set of view periods, each of which is a time interval during which some specific antenna is available
for allocdion to that mission, or in case of the array, when some number of array antennas at one site may be
allocated. We denote the view periods[Mﬁp,Vuep], whereu =1E U ranges over users, ang=1... P, ranges over
the set of view periods for each user. For array allocations, the minimum requiredatyimg antenna profile is

given by A,j,‘;q (t" V,,), which may differ from one view period to another. Above the minimum required level,

additional array antems might be allocated, e.g. to improve signal strength in the face of uncertain weather: we
denote the maximum additional allocation by,,. For single antenna allocations, the profile funci®constant

A,:;q (=1, and A, =0. For decision variables we selected a mechanism that preserves neighborhoods in general,

so that a small perturbation in the value of the decision vector will result in a small change to the scheduled
allocation. These are definedfaiows (suppressing thep subscripts), as illustrated in Figute
1. For each view period, define a triple of realued decision variables .,§,.5; €[0,1]

2. Calculate the start and end of the allocated portion of the view period =g*+",(V°#V*) and
t°=1"+",(V° #1'), respectively
3. Calculate the allocated antenna quantity (for array allocationsjixs A™? () + ceil (" 5#)

max__ ’_L|_,_|_| | | | |
min
~
' 4 —!
# antennas /
required

time €&1,:82:83) time

Figure 1. Decision variables for antenna allocationA reatvalued triple is sufficient to speciflye antenna
allocation profile over each possible viewing interval.

GDES is very effective at exploiting structure in the candidate population to help speed convergence to the
Pareto frontier. Figure 2 illustrates an example that compares GDE3 witH aetrtar generation method that
randomly creates candidates within the decision variable bounding values. This problem represents two users
competing for time over several days, with a maintenance outage on one day that implies that neither user can obtain
the total requested time over the entire interval. The details are:

* two identical missions, userl and user2, with periodic communications requirements
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e each mission requires a constant allocation of 5 antennas for each link (constraint)

* each mission reques contacts that are at least 3 hours in duration (constraint), with a preferred duration of 12
hours (objective)

* gaps between contacts are limited to 18 hours (constraint)

* the scheduling interval is 4 days in duration

* both missions have the same 12 haemwperiod each day

e asingle site with a fixed number of 10 antennas is available at all times except day 2, when only 5 are available

Were it not for the shortage of antennas on day 2, this problem would have a trivial solution where each mission
could mximally achieve all of its objectives. As it is, there is contention on day 2 for the available antenna re
sources. When this problem is encoded as described above, it has the following characteristics:

* two objectives: the penalty functions for userl agerf

e one constraint for each user, for minimum pass size

* one system level constraint, to enforce antenna allocation levels to not exceed the available quantity

* 16 decision variables, two for each user/viewperiod combination (antenna allocations anet,cemsialy two
decisions variables per viewperiod are required)

Figure 2 (top) shows the evolution of the rmbwminated set after various numbers of generations using the
GDES algorithm: each plot shows the values of the userl and user2 objectiveshfonezaber of the candidate
population, on thex andy axes respectively. The run parameters were: time resolution = 1 hour, population size
N=400, F=0.5, CR=0.1. The initial conditions were uniformly random within the bounds of the decision variable
limits. Initially (Generation 0, Figure 2(a) top), the population is nearly all constraint violated (red squares), since a
random decision variable vector is very likely to exceed either the resources on day 2, or the minimum gap
constraint. After 50 generatioiiBigure 2(b) top) the population has evolved to consist entirely of feasible solutions
(blue circles), and shifts to the lower left as increasingly smaller values of the penalty values are discovered. By
generation 100 (Figure 2(c) top) the population iaarly evolved to the Pareto frontier for this problem: the non
dominated set is shown as green circles. By generation 150 the convergence is complete: values at the extreme
represent solutions where the available 5 antennas are allocated entirelytteethmission. The remaining values
along the frontier represent partial allocations to each mission. The gaps in the curve reflect the constraint that
solutions with pass durations <3 hours are excluded as not feasible.

By contrast, Figure 2¢d) bottom ilustrates the same problem solved with everything identical except that a
random trial vector generator was used instead of GDES. After 50 generations (Figure 2(b) bottom), the population
still shows a handful of candidates with constraint violations, slmamlvs much slower convergence towards the
Pareto frontier. After 150 generations (Figure 2(d) bottom) the candidates are still very spread out and far from the
frontier Iocated by GDE3.
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Figure 2. Comparison of GDE3 and random trial vector generation.

IV. Scheduling With Uncertainty

In this section we describe two approaches to uncertainty modeling in theobjalttive array scheduling
problem: the first is based on an explicit objective to represent the probability (or an indicator) of failuredi inclu
in the set of multiple objectives that are to be optimized. The second exploits a statistical evaluation of objectives for
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a given scheduléNe show how each of the two techniques can be used to solve the same simple example problem,
thus illustrating heir advantages and disadvantages.

A. Choosing Objectives tdmprove Schedule Robustness

We first consider the explicit inclusion of an objective to reflect differing degrees of schedule risk. Such an
objective can be optimized along with all the others & phoblem, requiring no algorithmic chang®¥éith this
approachthe risk tradeoff curveanbe constructed simply from the Pareto frontier that is built up as part of running
the optimization algorithm. Note that while there is no reason to limit togéesiisklike objective, it may be more
difficult to comprehend the resulif there are manyso there is some advantage to attempting to combine risk
factors in to a single objectiveThe following illustrative example shows how this works in the contéxa
simplified array example.

We consider asimple example problenbased onuncertainty due taequipment reliability. Consider a two
antenna scheduling problem withe following choices: one antenna, Al, has a relatively short mean time to failure
(MTTF) and to repair (MTTR), but if a failure occurs during a scheduled track, the entire track is lost. A second
antenna, A2, has a much longer MTTF and MTTR, but the availability ratio MTTF/(MTTF+MTTR) sathefor
both antennas. Based only on availabjlitye two antennas are equal in desirabildgsuming that failures are
random, &any given tne either antenna could be scheduled for use and would be expected to be available.

From a single userOs perspective, an overall probability of schedule ¢aitube expressed as:

f(x)=1"# p

where p; is the probability that thé" contact is successful, and the product is over all contacts in the schedule.

Since we are keeping this quantity as a separate objective, itéssaritial to normalize the probability or even to
scale for commensurability with other objectives. If we assume an exponential failure distribution, then

) i 'MTTE; \whered, andMTTF, are the duration and MTTF of thie contact, respectivel and thus

pi=¢exp
- d.
—1—exp|— E i
S CXP( MTTF;

i

Figure 3 illustrates an example problem based on this scenario, where there are two objectixexisthe
corresponds to scheduled time meeting duration and gap preferences and constraints, ywaKes tta@respond®

the schedule failure probabilit_‘f(}).
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Figure 3. Convergence to a Pareto frontier with failure risk as one of the objectives.
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In this example, once the population eliminates trial solutions with constraint violations (Fig)ré 8¢nsists
of passes scheduled on both A1 and A2. As the population evolves further, it settles into a Pareto frontier that
reflects the tradeoff between contact duration and risk of failure, and places all scheduled passes onto A2. (Figure
3(f)). Onthis frontier, the highest user preference vaks®) corresponds to the greatest failure probability: this is a
consequence of the fact that higher user preference values (incregsimigespond to longer passes, which are
more likely to fail based omur exponential failure
probability. 1.0

Y=confidence level
0.8

B. Model-Based Uncertainty
An alternate approach to considering uncertainty 06l
that can impact the schedule is to focus on the
evaluation of the objective functiond;. In the basic
form of the algoritm, a candidate schedule

represented by a decision variable vectar is

evaluated to compute a vector of objective function 0.0- ‘ ‘ J
0 1 2 3 4 5 6

values f(x) However, this Opointévaluation may

depend on one or more parametérs e.g. through Figure 4. Selecting a conﬂdence level for samplir

objective valuesban example.

P(fi=xi)

0.2

f(x;"), where " has nordeterministic values.

Usually a mean or characteristic valrfbis selected, 10
but a better approach is to sample of the probability

distribution of ¢ and choose for?(};q)) a value

0.8
reflecting a certain confidence lev¥. Thus, for each
objective function?i(};fp), we seek a value; such E osl
that the probhaility P[fi(};q))in] Y;, where we % [
keep x fixed and vary " (see Figurel). This 3 o4l
essentially requires a Monte Carlo evaluation of eac_ﬁ; —
candida¢ schedule in the populatidth a potentially §

costly operation tht depends on the details of how the 0.2
parametergp affect the schedule evadltion.

This technique can be illustrated on the same = ‘ ‘ L
problem used above to show how objectives can be -— 10% 20% 30% 40% 50% 60% 70%
added to model risk. Here we do not add any. service level
additional offectives, but evaluate the (in this case, '9uré 5. Migration of scheduled contacts to a mor
single) objective value using a Monte Carlo evaluatiofieliable resource as service level increases.
to simulate the failure of passes scheduled on antenna
Al or A2. The results are plotted in Figure 5 where the fraction of time scheduled on antenna Alniastaow
function of service level,. For low values of the service level, solutions are roughly equally distributed on the two
antennas. As the service level increases, to around 25%, the scheduled passes show a pronounced aiftatio A2,
higher service levels (>60%) they are essentially all scheduled only on A2.

An interesting feature of this approach is that it does not rengiad hocrules or heuristics. The robustness of
the schedule follows directly from the selection afididates that have better objective function values in the face of
random variations that can influence them. This is in contrast taltbeativeappoach described aboyghich
requires the explicit identification of factors that can lead to schedeékage, and then a way to calculat tisk
value as an objective.

One drawback of this approach is that is does not take into account any scheduling reaction that could be taken

once a failure occurs. Since we are holdiﬁgfixed, the schedule remains unchanged when we evaluate the
objective functions, even though corrective action could be taken during execution to lessen the severity of a failure.
In this sense the method is overly pessimistic. On the other hand, a scheduwerdggmtv&ll using this technique is

robust to variations in” that might otherwise ese a schedule to fail (provided the confidence lef/& high
enough).
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V. Conclusion

We have described a mutibjective formulation of the proposéakep Space Array Network communicason
scheduling problem, and two methods for incogpiog sources of uncertainty.

The first method explicitly incorporates probability of failure into the mulbjiective formulation by defining
one of more explicit olgictives that quantify this value @s indicator. The advantage of this approach is that it
allows for probability of failure to directly and visibly trade off against other objectives. The main drawback is that
explicit probability of failure can be diffult to formulate and to calculate, and increases the dimensionality of the
objective space.

The second method makes use of a stochastic assessment of each member of the schedule population, by
evaluating the multiple objective functions at a specifiedfidence level. The advantage of this method is that it
does not rely omd hocheuristics or on a complete formulation of probable failure, but rather uses the distribution of
objective function values to drive towards the Pareto frontier. The drawbatkaisthis method can be
computationally very costly, requiring a large number of Monte Carlo evalsaticthe population schedules.

We plan to apply both techniques to larger scale problems, and to quantify the performance differences in
several problem of practical interest and scale. We are also evaluating this technique on the problem-of multi
objective schedidg of scientific observatories, in which the balancing of scientific objectives with operational
requirements naturally suggests a maljective formulation.
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